
LA-UR-21-29760
Approved for public release; distribution is unlimited.

Title: It's Hard for Neural Networks to Learn the Game of Life

Author(s): Springer, Jacob Mitchell
Kenyon, Garrett

Intended for: IJCNN 2021, 2021-07-18 (Los Alamos, New Mexico, United States)

Issued: 2021-09-30

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

It’s Hard for Neural Networks to Learn the Game

of Life

1st Jacob M. Springer

Swarthmore College

Swarthmore, PA, USA

jacmspringer@gmail.com

2nd Garrett T. Kenyon

Los Alamos National Laboratory

Los Alamos, NM, USA

gkenyon@lanl.gov

Abstract—Efforts to improve the learning abilities of neural
networks have focused mostly on the role of optimization methods
rather than on weight initializations. Recent findings, however,
suggest that neural networks rely on lucky random initial weights
of subnetworks called “lottery tickets” that converge quickly to
a solution [1]. To investigate how weight initializations affect
performance, we examine small convolutional networks that
are trained to predict n steps of the two-dimensional cellular
automaton Conway’s Game of Life, the update rules of which can
be implemented efficiently in a small CNN. We find that networks
of this architecture trained on this task rarely converge. Rather,
networks require substantially more parameters to consistently
converge. Furthermore, we find that the initialization parameters
that gradient descent converges to a solution are sensitive to small
perturbations, such as a single sign change. Finally, we observe
a critical value d0 such that training minimal networks with
examples in which cells are alive with probability d0 dramatically
increases the chance of convergence to a solution. Our results are
consistent with the lottery ticket hypothesis [1].

Index Terms—neural networks, game of life, lottery ticket
hypothesis

I. INTRODUCTION

Recent findings suggest that neural networks can be “pruned”

by 90% or more to eliminate unnecessary weights while

maintaining performance similar to the original network .

Similarly, the lottery ticket hypothesis [1] proposes that neural

networks contain subnetworks, called winning tickets, that

can be trained in isolation to reach the performance of the

original. These results suggest that neural networks may rely

on these lucky initializations to learn a good solution. Rather

than extensively exploring weight-space, networks trained

with gradient-based optimizers may converge quickly to local

minima that are nearby the initialization, many of which will

be poor estimators of the dataset distribution. If some subset

of the weights must be in a winning configuration for a neural

network to learn a good solution to a problem, then neural

networks initialized with random weights must be significantly

larger than the minimal network configuration that would solve

the problem in order to optimize the chance having a winning

initialization. Furthermore, small networks with winning initial

configurations may be sensitive to small perturbations.

Similarly, gradient-based optimizers sample the gradient of

the loss function with respect to the weights by averaging

the gradient at a few elements of the dataset. Thus, a biased

training dataset may bias the gradient in a way that can be

detrimental to the success of the network. Here we examine

how the distribution of the training dataset affects the network’s

ability to learn.

In this paper, we explore how effectively small neural

networks learn to take as input a configuration for Conway’s

Game of Life (Life), and then output the configuration n

steps in the future. Since this task can be implemented

minimally in a convolutional neural network with 2n + 1
layers and 23n + 2 trainable parameters, a neural network

with identical architecture should, in principle, be able to learn

a similar solution. Nonetheless, we find that networks of this

architecture rarely find solutions. We show that the number

of weights necessary for networks to reliably converge on

a solution increases quickly with n. Additionally, we show

that the probability of convergence is highly sensitive to small

perturbations of initial weights. Finally, we explore properties

of the training data that significantly increase the probability

that a network will converge to a correct solution. While Life

is a toy problem, we believe that these studies give insight into

more general issues with training neural networks. In particular,

we expect that other neural network architectures and problems

exhibit similar issues. We expect that networks likely require

a large number of parameters to learn any domain, and that

small networks likely exhibit similar sensitivities to small

perturbations to their weights. Furthermore, optimal training

datasets may be highly particular to certain parameters. Thus,

with the growing interest in efficient neural networks [2]–[6],

this results serve as an important step forward in developing

ideal training conditions.

A. Conway’s Game of Life

Prior studies have shown interest in applying neural networks

to model physical phenomena in applications including weather

simulation and fluid dynamics [7]–[10]. Similarly, neural

networks are trained to learn computational tasks, such as

adding and multiplying [11]–[14]. In all of these tasks, neural

networks are required to learn hidden-step processes in which

the network must learn some update rule that can be generalized

to perform multi-step computation.

Conway’s Life is a two-dimensional cellular automaton with

a simple local update rule that can produce complex global

behavior. In a Life configuration, cells in an n×m grid can

be either alive or dead (represented by 1 or 0 respectively).

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

20
21

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-6
65

4-
39

00
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IJC
N

N
52

38
7.

20
21

.9
53

40
60

Authorized licensed use limited to: LANL Research Library. Downloaded on September 30,2021 at 20:21:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. An example of an 8× 8 cell board of Life over six time steps, evolving in time from left to right. White pixels are considered alive and black pixels
are considered dead.

Fig. 2. Neural network architecture diagrams for the 1-step minimal model and L(n,m). On the left, the 1-step minimal architecture consists of an input layer
that feeds into a convolutional layer with two 3× 3 filters with ReLU activation, then into a convolutional layer with one 1× 1 filter with ReLU activation,
fed into a similar convolutional layer but with sigmoid activation for decoding. On the right, the architecture for L(n,m) consists of the same as the minimal
model, except where the first two hidden layers consist of 2m and m filters respectively, and are repeated n times, where m is the factor of overcompleteness
(see text).

To determine the state of a given cell on the next step, Life

considers the 3× 3 grid of neighbors around the cell. Every

step, cells with exactly two alive neighbors will maintain their

state, cells with exactly three alive neighbors will become

alive, and cells with any other number of neighbors will die

(Figure 1). We consider a variant of Life in which cells outside

of the n×m grid are always considered to be dead. Despite

the simplicity of the update rule, Life can produce complex

output over time, and thus can serve as an idealized problem

for modeling hidden-step behavior.

II. RELATED WORK

Convolutional models of cellular automata including the

Game of Life have been studied by Gilpin [15], who classifies

structural representations of the learned solutions to different

cellular automata. Furthermore, Gilpin notes that narrow

networks do not often converge, and for consistent convergence

behavior, the cellular networks must be sufficiently wide. Our

work in this paper quantifies this result, and in addition explores

the sensitivity of initial conditions to perturbations and different

dataset distributions.

Prior research has shown interest in whether neural networks

can learn particular tasks. Joulin et al. [13] argue that certain

recurrent neural networks cannot learn addition in a way that

generalizes to an arbitrary number of bits. Theoretical work

has shown that sufficiently overparameterized neural networks

converge to global minima [16], [17]. Further theoretical work

has found methods to minimize local minima [18]–[20]. Nye

et al. [21] show that minimal networks for the parity function

and fast Fourier transform do not converge to a solution unless

they are initialized close to a solution.

Increasing the depth and number of parameters of neural

networks has been shown to increase the speed at which

networks converge and their testing performance [22], [23].

Similarly, Frankle et al. [1] find that increasing parameter count

can increase the chance of convergence to a good solution.

Similarly, Li et al. [24] and Neyshabur et al. [25] find that

training near-minimal networks leads to poor performance.

Choromanska et al. [26] provide some theoretical insight into

why small networks are more likely to find poor local minima.

Weight initialization has been shown to matter in training

deep neural networks. Glorot et al. [27] find that initial weights

should be normalized with respect to the size of each layer.

Authorized licensed use limited to: LANL Research Library. Downloaded on September 30,2021 at 20:21:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Measured probability that the m times overcomplete n-step-Life architecture learns successfully. Each line corresponds with a particular n. Each point
plots the percentage of 64 instances of L(n,m) with random initializations sampled from a unit normal distribution that learned the rules of n-step-Life after
1 million training examples. We train instances of L(n,m) for values 1 ≤ n ≤ 5 and 1 ≤ m ≤ 24, excluding many combinations due to computational
constraints. For n > 1, none of the instances of L successfully learned with the minimal(m = 1) architecture. As n increases, the degree of overcompleteness
required for consistent converges increases rapidly.

Dauphin et al. [28] find that tuning weight norms prior to

training can increase training performance. Similarly, Mishkin

et al. [29] propose a method for finding a good weight

initialization for learning. Zhou et al. [30] find that the sign of

initial weights can determine if a particular subnetwork will

converge to a good solution.

There is significant research into weight pruning and de-

veloping efficient networks [2]–[6], [24], including the lottery

ticket hypothesis, which suggests that gradient descent allows

lucky subnetworks to quickly converge to a solution [1].

Finally, there is interest in learning hidden step computational

processes including algorithms and arithmetic [11]–[14], fluid

dynamics [7]–[9], and weather simulation [10].

Among the above papers, there are studies that have already

shown that weight initialization, overparameterization, and

training dataset statistics can determine whether or not a neural

network can converge to a good solution to a problem. In this

paper we build on these results to quantify them in the case of

a simple problem with a known minimal solution. This allows

us to derive empirical insights that may not be possible to

observe where a perfect solution is not known, such as in the

vision or language domains.

III. EXPERIMENTS AND RESULTS

We define the Life problem as a function-learning problem.

In particular, if x is a matrix of 1s and 0s, define G(x) to be the

next step in Life, according to the previously described update

rules. Then, we define the Life problem to be the problem

of predicting G(x) given x. Similarly, we define the n-step-

Life problem as the problem of learning to predict Gn(x)
given x. Since Life has a local update rule that considers a

3 × 3 grid to determine the state of the center cell, we can

model Life with an entirely convolutional neural network, i.e.,

a neural network without any fully connected or pooling layers.

A convolutional layer with two 3 × 3 filters that feeds into

a second convolutional layer with one 1× 1 filter, can solve

the 1-step-Life problem efficiently, i.e., any fewer layers or

convolutional filters would yield an architecture which cannot

implement 1-step-Life. Thus, we call it the minimal architecture

for Life. We use ReLU activation functions to prevent vanishing

gradients for when the architecture is generalized to the n-step-

Life problem by stacking layers. The second convolutional

layer feeds into a final convolutional output layer with one

1× 1 filter with a sigmoid activation function. This forces all

outputs to approximate either 0 or 1 but does not, on its own,

perform meaningful computation, and thus is included for this

convenience. With appropriate weights, this constructs a three-

layer convolutional neural network that can solve the 1-step-

Life problem with 25 weights. We generalize this architecture

to solve the n-step-Life problem by stacking n copies of this

network, as shown in Figure 2 (right).

We have hand-engineered weights for these architectures

that implement the underlying rule and thus solves the n-step-

Life problem with perfect accuracy. We conclude that this

minimal neural network architecture can solve the n-step-Life

problem with a 2n + 1 layer convolutional neural network

with 23n+ 2 weights. In principle, a neural network with an

identical architecture should be able to learn a similar solution.

A. Life Architecture

We construct a class of architectures to measure how

effectively networks of varying sizes solve a hidden-step

computational problem. In particular, we employ an architecture

similar to the one described in the previous section: an entirely

convolutional neural network with n copies of a convolutional

layer with 3×3 filters that feed into a convolutional layer with

Authorized licensed use limited to: LANL Research Library. Downloaded on September 30,2021 at 20:21:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. First five graphs: Binary cross-entropy loss over the duration of training of the 64 networks trained to solve the n-step-Life problem for 1 ≤ n ≤ 5.
The horizontal axis corresponds to number of epochs of training. For clarity, we omit from the graphs the loss of networks that eventually diverged to a
degenerate state where the networks predicted all cells to be dead, regardless of the input Life configuration. These examples converge on a loss that is well
over 1. Last graph: Average earliest point of convergence of L(n,m) for m = 8 and 1 ≤ n ≤ 4. Note that n = 5 is excluded because no instances of
L(5, 8) converge. We compute the earliest point of convergence for each network by observing the first epoch where the loss falls below 0.01, indicating that
the network has reached a stable 100% accuracy.

1 × 1 filters, and finally, a convolutional layer with a single

1× 1 filter and sigmoid activation to decode the output into a

Life configuration. When the architecture has n copies of the

described layers, we say that it is an n-step architecture. In

the minimal1 solution, each repeated 3× 3 convolutional layer

has two filters and each repeated 1× 1 convolutional layer has

one filter. When a similar architecture has 2m 3 × 3 filters

and m 1× 1 filters in each respective repeated layer, we say

that the architecture is m-times overcomplete with respect to

the minimal architecture. We let L(n,m) describe the n-step

m-times overcomplete architecture.

To train instances of each architecture, we initialize the

weights randomly from a unit normal distribution. The networks

are implemented in Keras [31] on top of TensorFlow [32]

and trained using the Adam optimizer (α = 0.001, β1 =
0.9, β2 = 0.999) [33] with a binary cross-entropy loss function

on the output of the model. Each instance is trained with

1 million randomly generated training examples separated

into 100 epochs of 10,000 training examples each, with a

1A reviewer helpfully pointed out that an even smaller network can be
constructed to solve Life, with a single 3×3 convolution that counts neighbors,
outputs a 0 if there are two neighbors, 1 if there are three neighbors, and
-1 otherwise, and then is added to the input and fed through a Heaviside
activation function. However, our model is minimal given the constraint that
we are using a traditional feedforward CNN with ReLU activation.

batch size of 8. Each training and testing example is generated

as follows: first, we uniformly draw a density d from [0, 1],
and then generate a 32 × 32 cell board such that each cell

is alive with probability d. It is extremely unlikely that the

network will ever see the same training example twice. Thus,

separating testing data into a testing set and a validation set

is unnecessary, since novel data can be generated on the fly.

To improve computational efficiency, all networks with the

identical parameters are implemented so that they can be trained

in parallel using the same randomly generated dataset.

B. The Difficulty of Life

To quantify the effectiveness of a given neural network

architecture, we measure the probability that a random ini-

tialization of the network converges to a solution after being

shown one million training examples. Because L(n,m) can

only implement a 3×3 update rule in each step of computation

and is minimal in this sense, for L(n,m) to solve the n-step-

Life problem, it must learn the underlying rule. Thus, we

consider an instance of L(n,m) to be successful when it learns

the correct underlying rule, and can therefore predict Gn(x)
with perfect accuracy for all initial states x. Any instance of L
that does not have perfect accuracy did not learn the underlying

Authorized licensed use limited to: LANL Research Library. Downloaded on September 30,2021 at 20:21:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Left: Fraction of converged L(1, 1) networks with weights initialized with a k-sign perturbation of a converged solution to the 1-step-Life problem.
Center: Same as left except weights initialized with k-sign perturbation of the original initial weights that converged to the solution. Right: Same as center

except weights initialized with a uniform perturbation of the original initial weights. A k-sign perturbation of weights is defined as a perturbation in which k

weights are chosen randomly from a uniform distribution and replaced with the same magnitude weight with opposite sign. In all cases, 128 networks with the
specified weight initialization are trained over 50 epochs, which is well over the number of epochs required for convergence for instances of L(1, 1). We omit
the graph for uniform perturbations of converged weights, as small perturbations have little effect given the magnitude of the converged weights.

rule and is thus considered unsuccessful. We wish to determine

P [success of L(n,m) | n,m]

To accomplish this, we train 64 instances of L(n,m) for

1 ≤ n ≤ 5 and 1 ≤ m ≤ 24. We omit certain combinations

due to computational limitations. In Figure 3 we plot the

percentage of instances of L(n,m) that successfully learn the

n-step-Life problem.

We observe that of the minimal (m = 1) architectures, only

instances for the 1-step-Life problem (L(1, 1)) converged on a

solution, with a success rate of approximately 4.7%. Instances

of architectures to solve the one and two-step-Life problem

had a greater than 50% chance of converging to a solution

when the architecture was at least 3 and 4-times overcomplete,

respectively. Instances of architectures to solve the n-step-Life

problem for n ≥ 3 require an overcompleteness greater than

24, the highest degree of overcompleteness we tested, due to

computational constraints. This explosive growth rate suggests

that the degree of overcompleteness required for consistent

convergence of the n-step-Life problem grows quickly with

respect to n.

Strikingly, for 3 ≤ n ≤ 5, we do not observe the

hypothesized scaling behavior. Rather, we observe that for

high overcompleteness, the architectures for n = 4 outperforms

n = 3, and n = 5 performs similarly to n = 3. While all three

n require many more parameters than the minimal architecture

to consistently converge, we would expect that n = 3 requires

fewer than n = 4, which would require fewer than n = 5. We

have multiple hypotheses: firstly, we may observe this result

due to noise or dataset artifacts; secondly, our parameterization

of Life may have consistent behavior for all 3 ≤ n ≤ 5, which

may make the difficulty of learning any 3 ≤ n ≤ 5 steps

similar.

We plot the loss of the instances of L(n,m) for 1 ≤ n ≤ 5
and m = 8 in Figure 4 to illustrate typical rates at which the

networks converge to a solution. In addition, we compute the

average earliest point of convergence for converged networks

of L(n,m) architecture for 1 ≤ n ≤ 4 and m = 8 (Figure 4).

The earliest point of converge is computed by determining the

earliest epoch in which the loss of a convergent network falls

below 0.01 to indicate the network has learned a solution to

the n-step-Life problem. We exclude non-converged networks

from this metric.

C. Weight Perturbations and Learning

To observe the robustness of weight initializations and

of learned solutions, we perturb successful weight initializa-

tions and solutions of the minimal 1-step-Life architecture

L(1, 1). In particular, we perform two perturbations: the

k-sign perturbation and the uniform perturbation. The k-

sign perturbation modifies weights as follows: we select k

weights randomly from a uniform distribution. We replace

each chosen weight with a weight of the same magnitude but

of opposite sign. The uniform perturbation modifies weights

by adding a value selected uniformly from the range [−r, r]
for a given perturbation magnitude r. We choose a weight

initialization of a network which converges to a solution to

the 1-step-Life problem. We initialize and train instances of

the minimal architecture with these weights perturbed by k-

sign perturbations for 1 ≤ k ≤ 8 and uniform perturbations

for r ∈ {0.25, 0.5, 0.75, 1.0}. Similarly, we initialize and train

instances of the minimal architecture with the described k-sign

and uniform perturbations of the converged solution of this

network. For each perturbation type, we train 128 instances.

We plot the fraction of successful networks for each

perturbation type in Figure 5. Notably, a 1-sign perturbation of

the original initial weights of the successful network causes the

network to fail to converge approximately 20% of the time, and

only 4–6 sign perturbations are required to drop the success

rate below 50%. This suggests that for minimal networks, the

weight initialization is sensitive to perturbations. This is not

unique to sign perturbations. Even a relatively small uniform

perturbation of 0.25 magnitude (where weights are changed by

0.125 in expectation) causes the tested networks to fail to learn

approximately 36% of the time. Finally, we observe that even

a 1-sign perturbation of an already converged solution causes

Authorized licensed use limited to: LANL Research Library. Downloaded on September 30,2021 at 20:21:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Top: Fraction of minimal networks that converge to a solution to the 1-step-Life problem (left and center) and 2-times overcomplete networks (right)
when trained with datasets of a given d-density dataset. The left and center graphs refer to the same training configurations, however, the left graph includes the
rate of convergence for datasets with d between 0.1 and 0.9 with 0.05 intervals while the center graph has data for d between 0.2 and 0.5 with 0.0125 intervals.

Bottom: Left: the probability that an arbitrary cell is alive after 1 step of Life of an instance of a 32 × 32 cell d-density dataset, given d. This
curve peaks at approximately d ≈ 0.38. Right: two examples from the generated datasets (0.8-density and 0.38-density). We generate a d-density dataset by
choosing 32× 32 cell grids as training examples where cells are alive with probability d.

approximately 90% of models to fail to learn, suggesting that

converged solutions are very sensitive to sign perturbations.

Furthermore, since typical weights are small in the converged

solution (weights have a mean of approximately 0.270 and

standard deviation of approximately −2.17), sign perturbations

do not represent large-magnitude changes.

D. An Optimal Training Dataset

Many deep learning systems are restricted by the dataset

which is available for training. We examine how a class

of training datasets affects the success rate of near-minimal

networks learning the 1-step-Life problem. In particular, we

construct a class of training datasets: the d-density dataset, a

32× 32-cell dataset in which cells are chosen independently

to be alive with probability d. Note that the dataset described

in Section III-A is a generalization of this class of datasets in

which d is chosen uniformly, which we call the uniform-density

dataset. We show examples of these datasets in Figure 6.

We train 128 instances of L(1, 2) on the d-density datasets

for 0.1 ≤ d ≤ 0.9 with intervals of 0.05. We train L(1, 1) on

the same datasets, and in addition, on d-density datasets for

0.2 ≤ d ≤ 0.5 with intervals of 0.0125. Surprisingly, we find

a sharp spike in probability of success for values of d between

approximately 0.3 and 0.4. When d = 0.35, we observe a 14%

success rate for the minimal model, a strikingly high success

rate considering that it is approximately double the success

rate of the 0.4-density dataset and triple the success rate of

the 0.3-density dataset (Figure 6). The same result, though

less exaggerated, appears for L(1, 2), where the performance

increases drastically for d = 0.35 and d = 0.4 (Figure 6).

The tiny range in which performance increases significantly

suggests that there is likely a critical value d0 such that the

d0-density dataset is in this sense optimal. We hypothesize that

the value of d0 coincides with the peak of the graph shown in

Figure 6, which plots the probability that a cell is alive after

one step of Life given that the initial configuration of Life is

drawn from a d-density dataset, for a given d. This would place

d0 ≈ 0.38. We predict that an optimal dataset must satisfy a

condition in which the probability of observing each possible

3× 3 local configuration of Life reaches an equilibrium that

allows the computed average gradient of the weights with

respect to the loss function and the training examples to direct

the weights quickly to a solution. For example, for very small

d, we expect most cells to be dead after one step of Life given

an initial state sampled from the d-density dataset. Thus, in this

case, the computed average gradient of the weights will tend

to drive the network towards a solution which predicts most

cells to be dead. The density which maximizes the probability

Authorized licensed use limited to: LANL Research Library. Downloaded on September 30,2021 at 20:21:11 UTC from IEEE Xplore. Restrictions apply.

that a cell will be on after one step of Life will maximize the

occurrence of cells with exactly three neighbors and alive cells

with exactly two neighbors, any instance of which will increase

the number of cells that are alive in the next step of Life. We

hypothesize that frequent observation of these configurations

are critical for a near-minimal network to solve the n-step-Life

problem.

IV. DISCUSSION

In this paper, we present four primary results:

1) The minimal network trained with gradient descent rarely

converges on a solution to Life.

2) As the complexity of the problem increases, the necessary

network size to consistently learn a solution grows rapidly.

3) Ideal initial network parameters are highly sensitive to

perturbations.

4) Gradient descent is highly sensitive to distribution param-

eters of the dataset.

This result is consistent with the lottery ticket hypothesis,

which proposes that neural networks converge due to lucky

subnetworks that occur due to random initialization which have

amenable initial weights for learning the particular task. Thus, it

would be unlikely for a near-minimal network to be initialized

with weights that are perfect for learning. We characterize this

likelihood for networks that model the Game of Life, and in

addition show that lucky initialization parameters are highly

sensitive to perturbations or non-ideal dataset distributions.

While Conway’s Game of Life itself is a toy problem and

has few direct applications, the results we report here have

implications for similar tasks in which a neural network is

trained to predict an outcome which requires the network

to follow a set of local rules with multiple hidden steps.

Examples of such problems include but are not limited to

machine-learning based logic or math solvers, weather and

fluid dynamics simulations, and logical deduction in language

or image processing. In these instances, without enormously

overcomplete networks, gradient descent based optimization

methods may not suffice to learn solutions to these problems.

Furthermore, such a result may generalize to problems that

do not explicitly involve local hidden step processes, such as

classification of images and audio, and virtually every other

application of machine learning. In addition, significant effort

has gone into developing faster and smaller networks with

similar performance to their larger counterparts. Our result

suggests that these smaller networks may necessarily require

alternative training methods, or methods to identify optimal

weight initializations.

The highly specific ideal dataset distribution for learning the

Game of Life may be specific to the particular networks we

train or the problem itself. However, other neural networks,

especially small networks, may suffer from similar problems.

The dataset parameters may need to be tuned near perfectly in

order to maximize the learning potential of neural networks.

In conclusion, we find that networks of the L architecture

that are trained to predict the configuration of Life after n

steps given an arbitrary initial configuration require a degree

of overcompleteness that scales quickly with n in order to

consistently learn the rules of Life. Similarly, we show that

weight initializations and converged solutions are extremely

sensitive to small perturbations. Finally, we find that these

networks are dependent on very strict conditions of the dataset

distribution in order to observe a significant increase in

success probability. These observations are consistent with the

predictions of the lottery ticket hypothesis, and have important

consequences in the field.

REFERENCES

[1] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[2] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in

Neural Information Processing Systems 28, C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran
Associates, Inc., 2015, pp. 1135–1143. [Online]. Available: http://
papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-\
efficient-neural-network.pdf

[3] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in neural information

processing systems, 1993, pp. 164–171.

[4] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[5] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–605.

[6] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[7] S. S. Baboo and I. K. Shereef, “An efficient weather forecasting system
using artificial neural network,” International journal of environmental

science and development, vol. 1, no. 4, p. 321, 2010.

[8] I. Maqsood, M. R. Khan, and A. Abraham, “An ensemble of neural
networks for weather forecasting,” Neural Computing & Applications,
vol. 13, no. 2, pp. 112–122, 2004.

[9] A. T. Mohan and D. V. Gaitonde, “A deep learning based approach
to reduced order modeling for turbulent flow control using lstm neural
networks,” arXiv preprint arXiv:1804.09269, 2018.

[10] G. Shrivastava, S. Karmakar, M. K. Kowar, and P. Guhathakurta,
“Application of artificial neural networks in weather forecasting: a
comprehensive literature review,” International Journal of Computer

Applications, vol. 51, no. 18, 2012.

[11] Ł. Kaiser and I. Sutskever, “Neural gpus learn algorithms,” arXiv preprint

arXiv:1511.08228, 2015.

[12] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv

preprint arXiv:1410.5401, 2014.

[13] A. Joulin and T. Mikolov, “Inferring algorithmic patterns with stack-
augmented recurrent nets,” in Advances in neural information processing

systems, 2015, pp. 190–198.

[14] A. Trask, F. Hill, S. E. Reed, J. Rae, C. Dyer, and P. Blunsom, “Neural
arithmetic logic units,” in Advances in Neural Information Processing

Systems, 2018, pp. 8035–8044.

[15] W. Gilpin, “Cellular automata as convolutional neural networks,” Physical

Review E, vol. 100, no. 3, p. 032402, 2019.

[16] S. Oymak and M. Soltanolkotabi, “Towards moderate overparameteriza-
tion: global convergence guarantees for training shallow neural networks,”
IEEE Journal on Selected Areas in Information Theory, pp. 1–1, 2020.

[17] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai, “Gradient de-
scent finds global minima of deep neural networks,” arXiv preprint

arXiv:1811.03804, 2018.

[18] K. Kawaguchi and L. P. Kaelbling, “Elimination of all bad local minima
in deep learning,” arXiv preprint arXiv:1901.00279, 2019.

[19] Q. Nguyen and M. Hein, “The loss surface of deep and wide neural
networks,” in Proceedings of the 34th International Conference on

Machine Learning-Volume 70. JMLR. org, 2017, pp. 2603–2612.

[20] K. Kawaguchi, “Deep learning without poor local minima,” in Advances

in neural information processing systems, 2016, pp. 586–594.

[21] M. Nye and A. Saxe, “Are efficient deep representations learnable?”
arXiv preprint arXiv:1807.06399, 2018.

Authorized licensed use limited to: LANL Research Library. Downloaded on September 30,2021 at 20:21:11 UTC from IEEE Xplore. Restrictions apply.

[22] S. Arora, N. Cohen, and E. Hazan, “On the Optimization of
Deep Networks: Implicit Acceleration by Overparameterization,”
arXiv:1802.06509 [cs], Jun. 2018, arXiv: 1802.06509. [Online].
Available: http://arxiv.org/abs/1802.06509

[23] D. S. Park, J. Sohl-Dickstein, Q. V. Le, and S. L. Smith, “The Effect
of Network Width on Stochastic Gradient Descent and Generalization:
an Empirical Study,” arXiv:1905.03776 [cs, stat], May 2019, arXiv:
1905.03776. [Online]. Available: http://arxiv.org/abs/1905.03776

[24] C. Li, H. Farkhoor, R. Liu, and J. Yosinski, “Measuring the
Intrinsic Dimension of Objective Landscapes,” arXiv:1804.08838

[cs, stat], Apr. 2018, arXiv: 1804.08838. [Online]. Available:
http://arxiv.org/abs/1804.08838

[25] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro, “Towards
Understanding the Role of Over-Parametrization in Generalization of
Neural Networks,” arXiv:1805.12076 [cs, stat], May 2018, arXiv:
1805.12076. [Online]. Available: http://arxiv.org/abs/1805.12076

[26] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
“The loss surfaces of multilayer networks,” in Artificial intelligence and

statistics, 2015, pp. 192–204.
[27] X. Glorot and Y. Bengio, “Understanding the difficulty of training

deep feedforward neural networks,” in Proceedings of the thirteenth

international conference on artificial intelligence and statistics, 2010,
pp. 249–256.

[28] Y. N. Dauphin and S. Schoenholz, “MetaInit: Initializing learning by
learning to initialize,” in Advances in Neural Information Processing

Systems, 2019, pp. 12 645–12 657.
[29] D. Mishkin and J. Matas, “All you need is a good init,”

arXiv:1511.06422 [cs], Feb. 2016, arXiv: 1511.06422. [Online].
Available: http://arxiv.org/abs/1511.06422

[30] H. Zhou, J. Lan, R. Liu, and J. Yosinski, “Deconstructing Lottery Tickets:
Zeros, Signs, and the Supermask,” arXiv:1905.01067 [cs, stat], Mar. 2020,
arXiv: 1905.01067. [Online]. Available: http://arxiv.org/abs/1905.01067

[31] F. Chollet, “keras,” https://github.com/fchollet/keras, 2015.
[32] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

Authorized licensed use limited to: LANL Research Library. Downloaded on September 30,2021 at 20:21:11 UTC from IEEE Xplore. Restrictions apply.

